ICGEB Capacity-Building Project in the Republic of Cameroon

Dr FOKAM Joseph,
PhD-Infectious Dis, PGD-Epidemiology
Virologist
Senior Scientist, Head of Virology Laboratory at CIRCB
Senior Lecturer, Faculty of Health Sciences, University of Buea
Lab Expert, National Public Health Emergencies Operations Coordination Centre

“To enhance detection capacity to respond to SARS-CoV-2 and other emerging infections in Sub-Saharan Africa by assessing and transferring cost-effective technology for rapid viral identification and surveillance”
OUTLINE

I. CAMEROON IN A NUTSHELL

II. INFECTIOUS DISEASE BURDEN

III. ICGEB CONTRIBUTION IN DIAGNOSTICS

IV. ICGEB CONTRIBUTION IN GENOMIC SURVEILLANCE

V. PANDEMIC PREPAREDNESS WITH ICGEB

VI. TAKE HOME MESSAGE
I. CAMEROON IN A NUTSHELL

Location: A country at the Centre of Africa

Capital cities: Yaoundé (political) & Douala (economical)

Overall surface: 466,050 km²

Population: 28.6 million in 2023 (2.63% annual increase)

Official languages: French and English
II. INFECTIOUS DISEASE BURDEN (1/4)

<table>
<thead>
<tr>
<th>Disease surveillance week 48</th>
<th>New Cases</th>
<th>New Deaths</th>
<th>Cumul Cases</th>
<th>Cumul Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthrax ("charbon" in french)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chikungunya</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cholera</td>
<td>47</td>
<td>3</td>
<td>4238</td>
<td>153</td>
</tr>
<tr>
<td>Dengue</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dracunculiasis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Viral haemorrhagic fever (last was Lyell syndrome)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Yellow fever</td>
<td>35</td>
<td>0</td>
<td>1322</td>
<td>17</td>
</tr>
<tr>
<td>Typhoid fever (all 10 regions)</td>
<td>13376</td>
<td>20</td>
<td>609307</td>
<td>472</td>
</tr>
<tr>
<td>Meningitis</td>
<td>13</td>
<td>1</td>
<td>1057</td>
<td>46</td>
</tr>
<tr>
<td>Malaria (all 10 regions)</td>
<td>45 333</td>
<td>86</td>
<td>2099920</td>
<td>2673</td>
</tr>
<tr>
<td>Poliomyelitis</td>
<td>7</td>
<td>0</td>
<td>633</td>
<td>11</td>
</tr>
</tbody>
</table>
II. INFECTIOUS DISEASE BURDEN (2/4)

<table>
<thead>
<tr>
<th>Disease surveillance week 48</th>
<th>New Cases</th>
<th>New Deaths</th>
<th>Cumul Cases</th>
<th>Cumul Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plague ("Peste" in french)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dog bites</td>
<td>150</td>
<td>0</td>
<td>5994</td>
<td>19</td>
</tr>
<tr>
<td>Snake bites</td>
<td>160</td>
<td>15</td>
<td>8873</td>
<td>103</td>
</tr>
<tr>
<td>Rabies</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Measles</td>
<td>16</td>
<td>0</td>
<td>9135</td>
<td>57</td>
</tr>
<tr>
<td>SRAS</td>
<td>3</td>
<td>0</td>
<td>590</td>
<td>22</td>
</tr>
<tr>
<td>Flu syndrome</td>
<td>4934</td>
<td>7</td>
<td>215951</td>
<td>102</td>
</tr>
<tr>
<td>Mpox</td>
<td>0</td>
<td>0</td>
<td>89</td>
<td>0</td>
</tr>
<tr>
<td>Smallpox</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diphtheria</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>COVID-19</td>
<td>1</td>
<td>0</td>
<td>808</td>
<td>11</td>
</tr>
</tbody>
</table>
Dynamics of COVID-19 burden in Cameroon: 2020 – 2022

Legend:
- Order of wave
- Duration in weeks
- Period (in weeks), Year
- Date start – Date end
- Nber confirmed cases
- Nber hospitalised
- Nber deaths
- Case Fatality rate
- Viral strains isolated by sequencing (%)

First wave
- 16 weeks
- 27/04/2020 - 16/08/2020
- 16,948 confirmed cases
- 1,847 hospitalised
- 386 deaths
- 2.3% Case Fatality rate
- Viruses of the lineage of origin (100%)

Second wave
- 21 weeks
- 1/11/2020 - 06/06/2021
- 52,271 confirmed cases
- 4,675 hospitalised
- 835 deaths
- 1.6% Case Fatality rate
- Non-variants of concern (70%)
- Alpha variant (20%)
- Beta variant (10%)

Third wave
- 11 weeks
- 15/06/2021 - 21/11/2021
- 21,753 confirmed cases
- 2,230 hospitalised
- 426 deaths
- 2.0% Case Fatality rate
- Non-variants of concern (60%)
- Delta variant (40%)

Fourth wave
- 8 weeks
- 06/09/2022 to 06/02/2022
- 10,803 confirmed cases
- 809 hospitalised
- 79 deaths
- 0.73% Case Fatality rate
- Omicron variant (90%)
- Non-variants of concern (10%)
COVID-19 under control in Cameroon since mid-2023 (Jan-Dec)
National Laboratory capacity in response to COVID-19

<table>
<thead>
<tr>
<th>Nº</th>
<th>Key indicators</th>
<th>March 2020, (n)</th>
<th>March 2022 (n)</th>
<th>Specific comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.</td>
<td>Number of frameworks for the genomic surveillance platform</td>
<td>0</td>
<td>1</td>
<td>Strong governmental engagement (ministerial decision, April 12, 2021)</td>
</tr>
<tr>
<td>ii.</td>
<td>Number of national strategies for SARS-CoV-2 genomic surveillance</td>
<td>0</td>
<td>2</td>
<td>The first plan has been revised as per changes in the pandemic.</td>
</tr>
<tr>
<td>iii.</td>
<td>Number of laboratories with the capacity for COVID-19 molecular testing</td>
<td>1</td>
<td>45</td>
<td>24 public laboratories and 21 private laboratories</td>
</tr>
<tr>
<td>iv.</td>
<td>Number of laboratories with the capacity for variant screening by PCR point mutation assay</td>
<td>0</td>
<td>16</td>
<td>These are laboratories with open real-time PCR systems for SARS-CoV-2</td>
</tr>
<tr>
<td>v.</td>
<td>Number of laboratories with the capacity/network for SARS-CoV-2 sequencing</td>
<td>0</td>
<td>6</td>
<td>5 public labs and 1 private lab (performing targeted and/or whole-genome sequencing)</td>
</tr>
<tr>
<td>vi.</td>
<td>PCR-positive samples successfully processed for SARS-CoV-2 genomic surveillance</td>
<td>0</td>
<td>3,881</td>
<td>1,509 PCR-mutation assays, 1,612 targeted sequencing, 760 whole-genome sequencing</td>
</tr>
</tbody>
</table>
First experience with the RT-LAMP technology for COVID-19

Loop-Mediated Isothermal Amplification:

- Loop-mediated isothermal amplification (LAMP) uses 4-6 primers recognizing 6-8 distinct regions of target DNA for a highly specific amplification reaction.

- A strand-displacing DNA polymerase initiates synthesis and 2 specially designed primers form “loop” structures to facilitate subsequent rounds of amplification through extension on the loops and additional annealing of primers.
III. ICGEB CONTRIBUTION IN DIAGNOSTICS (3/6)

First experience with the RT-LAMP technology for COVID-19

First step: Viral RNA isolation using a standard commercial kit (QIAamp® Viral RNA Mini Kit, Qiagen).

Second step: Amplification using a thermocycler at a single temperature of 65°C.
Results of COVID-19 RT-LAMP on nasopharyngeal swabs

Acceptable performance of RT-LAMP on nasopharyngeal specimens
(excellent outcome with high viral loads)

<table>
<thead>
<tr>
<th>Stratification</th>
<th>N</th>
<th>Sensitivity % (CI 95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT<25</td>
<td>129</td>
<td>98 (93-100)</td>
</tr>
<tr>
<td>CT≥25</td>
<td>93</td>
<td>63 (53-73)</td>
</tr>
</tbody>
</table>

Diagnostic performance of a colorimetric RT-LAMP for the identification of SARS-CoV-2: A multicenter prospective clinical evaluation in sub-Saharan Africa

Research Paper

Diagnostic performance of a colorimetric RT-LAMP for the identification of SARS-CoV-2: A multicenter prospective clinical evaluation in sub-Saharan Africa

III. ICGEB CONTRIBUTION IN DIAGNOSTICS (5/6)

Results of COVID-19 RT-LAMP on saliva without extraction

Overall acceptable performance of RT-LAMP on saliva (n= 970)

CT< 37 (National threshold)

<table>
<thead>
<tr>
<th>RT PCR (REFERENCE: Gold standard)</th>
<th>+</th>
<th>-</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-LAMP (Under evaluation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>44</td>
<td>33</td>
<td>77</td>
</tr>
<tr>
<td>-</td>
<td>11</td>
<td>798</td>
<td>809</td>
</tr>
<tr>
<td>TOTAL</td>
<td>55</td>
<td>831</td>
<td>886</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>80.0%</td>
<td>68.4% to 88.6%</td>
</tr>
<tr>
<td>Specificity</td>
<td>96.0%</td>
<td>95.3% to 96.6%</td>
</tr>
<tr>
<td>Positive Predictive Value (*)</td>
<td>57.1%</td>
<td>48.8% to 63.3%</td>
</tr>
<tr>
<td>Negative Predictive Value (*)</td>
<td>98.6%</td>
<td>97.9% to 99.2%</td>
</tr>
</tbody>
</table>

Kappa= 0.64 CI : 0.54 to 0.74
III. ICGEB CONTRIBUTION IN DIAGNOSTICS (6/6)

Capacity-building on RT-LAMP for other laboratories

- Successful implementation in all labs: thermocycler, heating block, or water bath
- Result performance: 100% concordance trained lab versus reference lab (CIRCB)
Genomic surveillance of SARS-CoV-2 reveals highest severity and mortality of delta over other variants: evidence from Cameroon. Fokam et al., Nat Sc. Reports 2023

With contribution from ICGEB for whole genome sequencing (Bill & Melinda Gates sponsorship)
IV. ICGEB CONTRIBUTION IN GENOMIC SURVEILLANCE IN CAMEROON (2/5)

Targeted sequencing of SARS-CoV-2 of positive samples

Sanger-sequencing and interpreted of variants using Stanford db.v9.5

- **Site:** Virology Laboratory of the “Chantal BIYA” International Reference Centre (CIRCB), Yaoundé, Cameroon

- **Laboratory technique:** design of Sanger sequencing of the spike region of SARS-CoV-2 positive specimens.

- **Training:** Laboratory sequencing testing with reference to ICGEB whole genome sequences.

Figure: Sanger sequencing pipeline
IV. ICGEB CONTRIBUTIUTION IN GENOMIC SURVEILLANCE IN CAMEROON (3/5)

Real-time sequencing of sub-variants in 2023

- **Current trend of COVID-19**: New Omicron sub-variants and recombinants with mild symptoms.

- **Genomic surveillance**: Atypical recombinants (BA.4.6/XBB.1), timely detect and track novel strains, related disease severity and risk of transmission for optimal pandemic control.

Figure: Phylogenetic tree of SARS-CoV-2 sequences obtained
IV. ICGEB CONTRIBUTION IN GENOMIC SURVEILLANCE IN CAMEROON (4/5)

WORKSHOP ONT SEQUENCING FOR SARS-CoV-2 in ITALY & CAMEROON

PORTABLE SEQUENCING DEVICE
- CE MARKED: YES
- Dimensions Size: W 105 mm, H 23 mm, D 33 mm
- Weight: 87 g

ICGEB-Italy

CIRCB-Cameroon

Fluorometer, benchtop
Qubit™ 4 Fluorometer, with WiFi

SuperScript™ IV First-Strand Synthesis System
Catalog number: 18091050

R9 Flowcells (Oxford Nanopore)
R9 Flowcells (Oxford Nanopore)
Flow Cells for MiniION and MiniION Mk1C
Supplier: Oxford Nanopore Technologies
Nanopore sequencing flow cells for use in sequencing

Incubators, laboratory, thermocycler
qTOWER³ G touch
qTOWER³ G touch (230 V), incl. color module 1

PC workstation
ESPRIMO P5011
Personal computer with licensed operating system

Primers: SARS-CoV-2 (ref. Diatheva)
5 kit for 100 reactions

Primers: SARS-CoV-2 (ref. Diatheva)
IV. ICGEB CONTRIBUTION IN GENOMIC SURVEILLANCE IN CAMEROON (5/5)

SETTING-UP OF A BIOINFORMATICS UNIT

- Visit Minister of Health & Diplomates
- Dr NKA, Head Unit trained on Bioinformatics at CERI – Prof Tulio

- **Bioinformatics unit**: Office workspace provided to the team;
- **Staff**: Head of unit & staff designated in the Virology Laboratory;
- **Basic equipment**: High throughput computers already in place;
- **Staff training**: further opportunities identified (ICGEB, CERI, Africa CDC);
- **pending needs**: a server/cluster for sequence data storage & sharing;
- **Vision**: become a bioinfo Ref. centre for surveillance in Central Africa.
V. PANDEMIC PREPAREDNESS WITH ICGEB (1/3)

National workshop to scale-up RT-LAMP in district laboratories of Cameroon for the surveillance of emerging pathogens

RT-LAMP laboratory training

RT-LAMP Result interpretation

Collaboration with the National Public Health Lab & the Public Health Emergencies Centre
Rollout of RT-LAMP in 10 Laboratories of Cameroon for community-based surveillance of emerging pathogens

Established RT-LAMP Lab network:

1. **CIRCB**: Lead reference lab.
2. **NPHL**: Yaoundé urban;
3. **Ekoumdoum district hosp**: Yaoundé rural;
4. **Dang district hosp**: Northern region;
5. **Olamze district hosp**: Southern boarder;
6. **EUC laboratory**: urban western region;
7. **DREAM laboratory**: rural western region;
8. **FHS laboratory**: urban southwest region;
9. **Limbe Hosp**: southwest boarder region;
10. **Abong-Mbang district hosp**: East region.

Note: Health facilities trained on RT-LAMP
Rollout of RT-LAMP in 10 African countries and in community laboratories for front-line surveillance of emerging pathogens

- The Project started officially on 20 August 2021 in five (05) African countries with nasopharyngeal swabs;
- Project expanded to 10 African countries with saliva testing and extraction-free;
- Project extended at the level of district laboratories for community-based surveillance of pathogens;
- Project network established for both epidemiological and genomic surveillance of other emerging pathogens (arboviral diseases) in sub-Saharan Africa.
VI. TAKE HOME MESSAGE

ICGEB Capacity-building in Cameroon:

- **RT-LAMP technology**: user-friendly across laboratories;

- **RT-LAMP implementation**: successful both with nasopharyngeal swabs and with saliva samples in across laboratories;

- **Genomic surveillance**: effective with sequencing of variants;

- **Extension of RT-LAMP technology to district laboratories**: an added-value for disease surveillance within the local communities;

- **Established network**: an effective system contributing for optimal pandemic preparedness and surveillance in sub-Saharan Africa.
THANK YOU

COVID-19 team (at start)

COVID-19 team (with ICGEB)

3rd INTERNATIONAL CONFERENCE ON PUBLIC HEALTH IN AFRICA
BREAKING BARRIERS POSITIONING AFRICA IN THE GLOBAL HEALTH ARCHITECTURE

BILL & MELINDA GATES FOUNDATION